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An ontology-based knowledge management framework

for a distributed water information system
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ABSTRACT
With the increasing complexity of hydrologic problems, data collection and data analysis are often

carried out in distributed heterogeneous systems. Therefore it is critical for users to determine the

origin of data and its trustworthiness. Provenance describes the information life cycle of data

products. It has been recognised as one of the most promising methods to improve data

transparency. However, due to the complexity of the information life cycle involved, it is a challenge

to query the provenance information which may be generated by distributed systems, with different

vocabularies and conventions, and may involve knowledge of multiple domains. In this paper, we

present a semantic knowledge management framework that tracks and integrates provenance

information across distributed heterogeneous systems. It is underpinned by the Integrated

Knowledge model that describes the domain knowledge and the provenance information involved in

the information life cycle of a particular data product. We evaluate the proposed framework in the

context of two real-world water information systems.
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INTRODUCTION
Hydrology is the science of water and is concerned with its

states, storages and fluxes in location, time and phase. Given

the increasing complexity of scientific problems, it has

become difficult to allocate the necessary resources to

solve problems within one organisation or at one site.

Data collection and data analysis are often carried out in dis-

tributed heterogeneous systems. Compared with other data-

oriented science communities, one of the distinctive aspects

of the hydrologic science community (Tarboton et al. )

is that there is great emphasis on ‘third party’ data, i.e.

data collected by other agencies. A significant challenge

for domain users is to identify the right data for their pur-

poses and to decide how and when to use that data.
Furthermore, the community has placed too much attention

on the networking of distributed sensing and too little on

tools to manage, analyse and understand the data (Bala-

zinska et al. ).

To appropriately interpret a data product generated by a

‘third party’, the users need to have a good understanding of

the origin of data. Provenance refers to the sources of infor-

mation, such as entities and processes, involved in

producing or delivering an artefact (WC Provenance Incu-

bator Group ). For example, the provenance of a

hydrological flow forecast may include: what sensors were

used, what observations were processed for calibration,

and which type and version of the hydrological model was
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applied to produce the prediction. The provenance forms

the knowledge base underpinning a data product.

Since provenance links artefacts and processes together,

it allows the information flow that generates a particular

data product to be scrutinised. This provides sufficient evi-

dence to allow assumptions of the underlying decision-

making to be understood and evaluated by politicians,

senior advisors, domain experts and the public. Provenance

can also be used to estimate data quality and reliability

based on source data and data transformations. This is extre-

mely important when using large numbers of datasets and

analysis methods provided by multiple sources such as var-

ious interstate water agencies. Users can assess the

truthfulness and robustness of data collection and analysis

provided by third parties.

Even though provenance has been identified as one of

the most promising methods to improve the transparency

of data, there are challenges that must be addressed to

make provenance information usable (WC Provenance

Incubator Group ). Most provenance systems developed

by the computer science community are embedded in work-

flow systems (e.g. Zhao et al. ; Altintas et al. ; Barga

& Digiampietri ; Scheidegger et al. ; Simmhan

et al. ). During workflow execution, provenance is col-

lected and stored for subsequent querying. Such

provenance systems are tightly integrated with workflow sys-

tems, but many large scale applications in hydrology involve

disparate sources and sub-systems. This makes it difficult to

generate accessible and usable provenance from existing sys-

tems. In particular:

• Integrating provenance to represent the information

life cycle of a data product creates an interoperability

problem since different terms for artefacts and pro-

cesses may be used by different sources. Provenance

arising from disparate sources must be semantically

linked.

• To describe the information life cycle of a data product,

concepts that reflect the domain knowledge as well as

the lineage relationships among artefacts and processes

should be captured. Domain semantics are integral to

making life cycle information understandable to diverse

users and are not normally captured by workflow sys-

tems. Furthermore, the domain knowledge should be
machine-readable and well defined for acceptance by

the communities.

• Most of the existing provenance capture techniques assume

a single system, either a workflow system, a data warehouse

or an operating system. For large scale applications,

provenance needs to be captured across distributed

heterogeneous systems, then integratable and queryable.

In this paper, we address the interoperability problem

for distributed water information systems by leveraging

semantic technologies. The paper presents how to leverage

an ontology-based approach to developing the knowledge

model and the knowledge management framework for two

real-world water information systems. The key contributions

of the paper are as follows:

• The design of an Integrated Knowledge model (IKnow)

for the water domain by aligning ontologies which rep-

resent the provenance information as well as the

domain concepts presented in the information life cycle

of a data product.

• A knowledge management framework in which knowl-

edge generated by distributed heterogeneous systems

could be harvested and integrated, grounded on the

IKnow model.

• An evaluation of the knowledge management framework

for two real-world water information systems, through

the development of provenance queries concerned with

the information life cycle of data products.

Recently, the W3C Provenance Working Group is work-

ing on defining a language, Provenance Data Model

(PROV), for exchanging provenance information among

applications. The model is domain-agnostic but is equipped

with extensibility points allowing further domain-specific

and application-specific extensions to be defined (WC Pro-

venance Working Group ). As it matures, we will

investigate how to adopt the Provenance Data Model to

develop the Integrated Knowledge model.

The rest of the paper is organised as follows. In the sec-

tion on ‘Related work’, we introduce the existing

provenance models and systems. Provenance requirements

from the hydrology domain are analysed in ‘Requirements

analysis’. In ‘The integrated knowledge model’, we introduce

the ontology-based knowledge information model that
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captures not only the lineage relationships between artefacts

and processes but also the domain knowledge generated in

the information life cycle of flow forecasts. ‘The knowledge

management framework’ describes the framework to

harvest and integrate the knowledge generated by hetero-

geneous systems. In ‘Model and system evaluation’, the

framework is implemented and evaluated over the two

real-world water information systems. We conclude the

paper in the final section by summarising the proposed

approach and pointing towards future work.
RELATED WORK

In this section, we first review the existing provenance infor-

mation models developed by the computer science

community, then general provenance systems. Finally we

review application-specific systems.

Provenance models

The semantic web offers a technology stack for information

retrieval and reasoning. It is well recognised as an effective

infrastructure to enable information sharing across

applications and the web. A provenance model is a represen-

tation of the artefacts, processes and their relationships

involved in the information life cycle of data. The semantics

of provenance is encoded using Resource Description Fra-

mework Schema (RDFS) (WC ) or Web Ontology

Language (OWL) (WC ). Users can inspect the ontol-

ogies to understand the provenance semantics and

domain-independent reasoning tools can be employed.

There are a number of efforts (McGuinness et al. ;

Sahoo et al. ; Hartig & Zhao ; Moreau et al. )

which use semantic web-based approaches to model prove-

nance. An extensive review (WC Provenance Incubator

Group ) has been conducted by the W3C Provenance

Incubator Group.

General provenance systems

Provenance systems are typically designed to capture and

manage provenance within the scope of a given computing

platform. Most of the existing provenance systems are
domain-independent but platform-dependent: (a) database

systems (Cui et al. ; Bhagwat et al. ); (b) operating

systems (Vahdat & Anderson ; Muniswamy-Reddy et al.

); and (c) workflow systems (Zhao et al. ; Altintas

et al. ; Barga & Digiampietri ; Kim et al. ;

Scheidegger et al. ). For data products generated by

heterogeneous systems, a platform-dependent approach is

not able to provide a complete information life cycle

description of provenance.

The Karma Provenance Framework (Simmhan et al.

) and the Provenance Aware Service Oriented Architec-

ture (PASOA) (Groth et al. ) both support provenance

capture across different systems.

Several comprehensive surveys (Bose & Frew ;

Simmhan et al. a, b; Buneman & Tan ; Tan ;

Freire et al. ) have been conducted on data provenance

and workflow provenance from different perspectives. In

Moreau (), 453 provenance papers are reviewed and

benefits identified in eScience, curated databases and

semantic web.

Domain-specific systems

Some provenance-aware systems have been built for specific

domains, such as bioinformatics, healthcare and geoscience.

For the sensor domain, the Earth System Science Server

(ES3) (Dozier & Frew ) is a software environment for

satellite image processing, with operating-system-based prove-

nance management capability. Liu et al. (b) propose a

Provenance-Aware Virtual Sensor System in which the aggre-

gated data from remote sensors is stored using a local

repository. Then a set of virtual sensor transformation work-

flows are executed and the provenance is recorded using the

Open Provenance Model (OPM). The computations are

organised in a centralised environment. In de Lange (),

a provenance-aware sensor network for real-time data analy-

sis is developed in which a custom query language is used to

ease query specification. The work focuses on the query fra-

mework. A provenance-based indexing method to make

sensor data searchable was developed in Ledlie et al.

(). Park &Heidemann () explored a process of trans-

forming online sensor data and sharing the filtered,

aggregated or improved data with others in Sensornet

Republishing. However, most of the systems are either
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platform-specific and cannot work in distributed hetero-

geneous environments, or only focus on the part of the

information life cycle of data products.

In the geosciences domain, the use of the components

for metadata generation and propagation to augment geo-

spatial data provenance have been explored (Yue et al.

). Patni et al. () developed a provenance ontology

to link sensors with observed phenomena. It extends the

Provenir upper level ontology (Sahoo & Sheth ) to

model domain-specific provenance. The Semantic Prove-

nance Capture in Data Ingest Systems (SPCDIS) (Zednik

et al. ) uses the Proof Markup Language (PML)

(McGuinness et al. ) to model provenance of image

data processing.

In this work, we present a generic knowledge model and

knowledge management framework for the water domain. It

captures the complete information life cycle of data pro-

ducts in a distributed heterogeneous environment. In Liu

et al. (a), we first presented the idea for building a pro-

venance-aware Hydrologic Sensor Web. This work

develops the idea through to a concrete approach.

In hydrology, Shu et al. () present some principles

for provenance representation which we also follow here,

and develop a multi-level OWL ontology for streamflow

forecasting use case. That paper has chosen to extend a

different generic provenance ontology: OPM in that paper

and PML in our case, demonstrating some significant conse-

quential differences. In both papers, the use of a generic

provenance ontology together with multiple ontologies for

domain modelling demonstrates extensibility and reusabil-

ity. The work of Shu et al. () shares one of the two use

cases we present here, but the domain modelling there is

considerably more extensive and detailed, providing a case

study for ontology design that leverages reasoning services

for provenance at the general, domain and use-case levels.

In this paper we have focused on identifying and aligning

well-known partial domain ontologies, which should

enhance future interoperability and also usability for

people and tools familiar with the terms. In this paper, we

go beyond the modelling and querying capability of Shu

et al. to embed it within two different distributed workflow

architectures, incorporating provenance harvesting, a prove-

nance ontology and visualisation applied to two working

systems.
PROVENANCE REQUIREMENTS ANALYSIS IN THE
WATER DOMAIN

In this section, we analyse the general requirements for

representing the life cycle of data products relevant to the

water domain. Based on this analysis, we present general

provenance requirements.

User requirements analysis

From discussions with various domain experts, requirement

analyses were performed from three different perspectives:

role, knowledge acquired and system involved. In the follow-

ing, we expand these perspectives.

Role classification

To understand the user groups, the roles they play in provid-

ing and consuming provenance and the provenance

questions to be asked around the data provided, we classify

the water domain users into four groups. The intention is not

to list all the provenance questions for each group but to pre-

sent a representative selection.

Hydrometrist. A hydrometrist is responsible for measuring

the hydrological cycle including rainfall, groundwater charac-

teristics, water quality and surface water flow characteristics

using gauging stations and instruments. There is a wide range

of factors that can influence the quality of the base data mana-

ged by hydrometrists. Given a measurement, the exemplar

questions to be asked include: (a) what type of gauge gave

the reading and its accuracy and frequency; (b) who deployed

the gauge; and (c) which agency does the gauge belong to?

Data analyst. A data analyst in this context is respon-

sible for preparing the data for hydrological modelling.

Understanding the preprocessing can help a hydrologic

modeller to decide if the processed data are appropriate to

be used for the model. Questions include: (a) what quality

checking method was used for validation; (b) what gridding

algorithm and what version were applied; and (c) what

observations were used for the gridding algorithm?

Hydrologic modeller. A hydrologic modeller studies the

behaviour of hydrologic systems to understand hydrological

processes. The knowledge used by hydrologic modellers is

important for water managers to make appropriate
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decisions. Questions to be asked include: (a) given a predic-

tion, what hydrologic simulation model and what version

were applied; (b) when and how was the model calibrated;

and (c) if the flow forecast did not reflect the actual reading,

how was the flow forecast produced?

Water manager. Since water security is a major chal-

lenge for society, the main activities as a water manager

are to plan, distribute and manage the use of water resources

based on the currency of water information and prediction

results. Questions to be asked of water managers include:

(a) is the decision appropriate for a particular circumstance

and (b) how reliable is the information being used to make

the decision?

Knowledge classification

As we can see from the role analysis, the provenance of a

data product in the water domain may involve multiple

user groups, heterogeneous datasets, tools and/or systems.

In order to answer the provenance questions discussed pre-

viously, a knowledge model is required to describe the

provenance involved. By examining the above provenance

questions required, we classify the knowledge into three

categories as follows.

Domain concepts. Since provenance represents the his-

tory of a piece of information, we argue that the domain

concepts as an important part of the history should be cap-

tured in the knowledge model. In the water domain, the

exemplar representative concepts are gauge, observation and

flow forecast. Each concept has its own domain-specific

meaning and represents rich domain knowledge. For example,

a gauge is a sensing device with properties such as location,

accuracy and frequency. Such knowledge may help data ana-

lysts to make good decisions about the quality of collected

data. On the other hand, an observation is an act associated

with a discrete time instant or period through which a

number, term or other symbol is assigned to a phenomenon

(Fowler ). It involves application of a specified procedure,

such as a sensor, instrument, algorithm or process chain (Cox

). By modelling and propagating domain concepts, the

knowledge management framework will enable users to dis-

cover and re-use the domain knowledge.

Computational methods. The data are accessed and ana-

lysed through various computational methods. These
methods should be described appropriately to enable users

to understand the analysis done to the related data, for

example, what parameters were used when the hydrologic

model was calibrated.

Lineage relationship. In many cases, a data product is

generated by a chain of methods. The lineage relationship

among the methods should be modelled to describe the

data product’s causality graph which captures the depen-

dences between the computational methods. As part of

data quality information, ISO 19115–2 (Cox ) defines

a lineage metadata tag to provide information about the pro-

cesses involved to produce the data in the dataset. However,

the description uses free text and does not readily support

the automatic processing of provenance information (Yue

et al. ).

System classification

Provenance can be generated by heterogeneous systems. We

classify them into the following four groups which represent

most of the existing hydrological working environments.

Database. The observation data recorded by gauges are

mainly stored in relational databases which are accessible via

web services or specific applications through query interfaces.

Workflow system. A workflow management system pro-

vides a visual environment to design, execute and re-use

scientific workflows. In our context, data analysts use work-

flow systems to process observations retrieved from the

databases.

Standalone application. There are some applications

and tools that are designed to solve hydrological domain

problems. For example, simulation models use gauge obser-

vations to generate various predictions.

Web service. A web service is a software system which

provides an API for managing and/or retrieving infor-

mation. For example, the Sensor Observation Service

(SOS) is one of the web services developed by the Open

Geospatial Consortium (OGC) (http://www.opengeospa-

tial.org/standards/sos) for publishing and retrieving

observation data.

Operating system. Processes are executed using com-

mand line interpreters to invoke a sequence of system

functions. Commonly, the commands are recorded as scripts

in files to complete some repetitive tasks.
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Provenance challenges and requirements

In our experience with various hydrological working

systems, it is impossible to answer most of the provenance

questions since the knowledge of information life cycle

of data is not modelled and propagated. To answer

the provenance questions discussed above, a systematic

approach needs to be developed to: (a) harvest the knowl-

edge generated by different user groups; (b) make the

provenance understandable by both human and machine;

(c) link provenance generated by heterogeneous systems

together to form the information life cycle of a data pro-

duct; and (d) make the information life cycle accessible

and queryable to the user groups. Therefore, a knowledge

model is required and should satisfy the following key

requirements:

• The model should be able to describe the information life

cycle of a data product in a precise way that includes the

domain concepts, the computational methods involved

and the lineage relationship. This is essential to improve

data transparency and enable interoperability for disco-

vering and re-using provenance knowledge.

• Since data analysis could be conducted by different com-

munities, which span multiple disciplines, the knowledge

covered by the information life cycle of a data product

could be large. To make the knowledge manageable,

the knowledge model should be designed in a modular

way. This will have the benefits of efficient query, easy

maintenance, good understandability and re-usability.

• At the system level, the knowledge management

framework should minimise the impact on the existing

data management systems and should be able to

harvest and integrate the provenance in a distributed

environment.

In the next two sections we will present the knowledge

model and the knowledge management framework that

satisfies the above requirements.
THE INTEGRATED KNOWLEDGE MODEL

In this section, we introduce the Integrated Knowledge

(IKnow) model.
IKnow model overview

While many general provenance models have been devel-

oped with distinctive features, a provenance model must

be suited to answer the provenance questions generated by

specific domain users. Without modelling the domain

knowledge, the data could not be interpreted and under-

stood properly.

Wedevelopanewknowledgemodel todescribe theknowl-

edge involved in the information life cycle ofdata products. The

ontology-based approach is to serve as the key enabling tech-

nology. An ontology is a formal, explicit specification of a

shared conceptualisation (Gruber ). It is the representation

of knowledge of a domain, where a set of objects (classes) and

their relationships (properties) are described by vocabularies

with constraints. By applying an ontology-based approach,

the knowledge is expressive and computer-interpretable

which are essential for distributed heterogeneous systems for

knowledge sharing and management.

It is important that the knowledge model is interoper-

able with the existing domain ontologies, which capture

the knowledge generated by the communities. Furthermore,

we need to answer provenance questions regarding the

knowledge generated from various domains. This requires

that the provenance knowledge can be described as if it

resides in a unified source. In other words, all the selected

ontologies need to be integrated seamlessly. Therefore,

the IKnow model is developed to link to the existing ontolo-

gies by providing clear alignments to the concepts involved.

By examining the knowledge classification based on the

requirements analysis, the IKnow model includes three

types of ontologies: (a) the domain concept ontologies; (b)

a computational method ontology; and (c) a general prove-

nance ontology to capture the lineage relationships of the

information life cycle.

Therefore, the IKnow model captures not only the line-

age of water information products but also domain

concepts. It is designed using a modular approach to effec-

tively represent the knowledge shared by various

communities and improve the interoperability that supports

meaningful knowledge exchange among different sources.

Next we discuss our approach to develop the ontology-

based Integrated Knowledge model for the water domain.

We use a concept map diagram (Novak & Canas ) to
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show the main concepts captured by the source ontologies

and the relationships between concepts.

Ontology selection

We evaluate the existing water domain knowledge represen-

tations based on availability and capability. Four ontologies

are selected as the source ontologies to develop the IKnow

model. In this subsection, we describe the main capabilities

of the four ontologies. Some of the selected key concepts

and their relationships are highlighted to demonstrate the

idea. The complete ontology is larger than that presented

in the figure. The linkage among the source ontologies will

be discussed in the next subsection.

WaterML (WML)

In thewater domain,WaterML (Taylor et al. ) is an emer-

ging standard which describes an information model and
Figure 1 | A fragment of the WaterML RDFS.

Figure 2 | A fragment of the semantic sensor network ontology.
format for the publication of water observations in XML. It

makes use of the Observations and Measurements (O&M)

standard (Cox ) and specialises it with harmonised defi-

nitions of water observation concepts to describe the

relevant aspects of hydrological observations. We approxi-

mate the WaterML 2.0 as an RDFS model, which we use as

the main method to describe observational data.

In Figure 1, wml:WaterMonitoringObservation is a sub-

class of om:Observation that is developed in the O&M stan-

dard. It is a Time Series which can be described by a Time

Value Pair. The wml:hasResult is modelled as a constraint

on the use of om:result. WaterML also provides the capa-

bility to describe the Quality and Unit of Measure of

observations through linking to other ontologies.
Semantic sensor network ontology (SSN)

SSN was developed recently by the W3C Semantic Sensor

Network Incubator Group (Lefort et al. ). It is a general

model to encode the capabilities and operations of sensor

assets. It provides a framework for describing sensors. This

makes it as a good candidate to describe stream gauges.

In Figure 2, Sensor produces ObservationValue and its

capabilities such as Accuracy, Frequency, Response Time,

etc., can be described by the corresponding class.
Process ontology (PO)

PO is part of the OWL for Services (OWL-S). OWL-S is an

ontology of services developed by the OWL Services

Coalition (Martin et al. ). It aims to enable web services
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with particular properties to be discovered, invoked, com-

posed and monitored. OWL-S includes an upper ontology

and three sub-ontologies: (a) the service profile for advertis-

ing and discovering services; (b) the process model, which

gives a detailed description of a service’s operation; and

(c) the grounding, which provides details on how to intero-

perate with a service via messages. As part of our IKnow

model, we use the process model for the representation of

the computational methods.

Figure 3 shows a fragment of the concepts to describe a

Process: Input, Output, Parameter, Result, etc. These con-

cepts are further modelled in the corresponding class.

Proof markup language (PML)

PML is a semantic-web-based provenance representation

(McGuinness et al. ). It is defined through three core

OWL ontology modules: (a) a Provenance module (pmlp)

to support provenance-related entity annotation; (b) a Justifi-

cation module (pmlj) to support lineage relation annotation;

and (c) a Trust module to support trust annotation.

Figure 4 shows some of the main concepts described in

pmlp and pmlj. pmlj:NodeSet can be regarded as a virtual
Figure 3 | A fragment of the process ontology.

Figure 4 | A fragment of the proof markup language.
container that contains a conclusion pmlp:Information and

the derivation pmlp:InferenceStep of the conclusion. pmlp:

InferenceStep uses pmlp:InferenceRule to describe what

method is applied and uses pmlp:hasAntecedentList to cap-

ture the derivation relations (dotted line). pmlp:Source

captures the data acquisition from the data source. The

pmlp:Query is a representation of provenance questions.

Figure 5 shows the main idea of how PML represents an

information flow. Each rectangle represents a pmlp:NodeSet

by which the information transformation and its output are

described. The information transformation can be a compu-

tational method (e.g. Process 1 in Figure 5) or a direct

assertion (e.g. Observation 1). The rounded rectangles

describe where the information comes from, such as an organ-

isation or an instrument as in our example. The lineage

relationships among information transformations are mod-

elled in a ‘backtrack’ fashion through pmlj:hasAntecedentList.

Ontology alignment

The knowledge generated in the information life cycle

should be queryable by users. This requires that the prove-

nance knowledge resides as if it is organised in an unified

ontology.

The selected source ontologies are complementary in

some concepts, and overlapping in others. To bring together

the ontologies seamlessly, an ontological alignment is

needed in order to provide interoperability with the systems
www.manaraa.com
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using them. In other words, the ontologies are aligned with

each other for the purpose of exchanging information

instead of developing a ‘complete’ new ontology. We take

two steps during the ontology alignment: (a) identify the cor-

respondences among the source ontologies and (b) build

mechanisms to represent these correspondences.

Identify the correspondence

We find that that some concepts presented in the prove-

nance knowledge can be represented by several source

ontologies. Therefore we need to select appropriate rep-

resentations from the source ontologies which can provide

richer semantic capabilities in our context.

Lineage relationship. We select the PML as the central

ontology to link the other source ontologies together. In par-

ticular, the PML justification module is selected to describe

the lineage relationships among the computational methods

and the PML provenance module is used as a bridge to link

to the domain concepts and the computational methods.

Domain concepts. As discussed, the main domain con-

cepts to be captured include the knowledge of gauge

instruments and the observations generated. Given the

information richness captured by Semantic Sensor Network

Ontology, ssn:Sensor is selected to describe the capability of

gauges that generate observations. The corresponding con-

cept captured in PML is pmlp:Sensor.

We use wml:WaterMonitoringObservation to describe

time series generated by some computational methods or

sensors. The corresponding concept captured by the PML

is pmlp:Information which provides a general space to let

users specify the information semantics.

Note that some concepts are captured by both domain

ontologies. For example, the Semantic Sensor Network

Ontology supports the observation concept (ssn:Obser-

vation) which could be another option to describe time

series. We choose to use the wml:WaterMonitoringObserva-

tion. This is because it specialises O&M with harmonised

definitions of water observation concepts as mentioned

before. O&M is defined as a standard model for the

exchange of observation acts and results. However, the

relationship between a sensor and its observations could

be retrieved through the PML justification module which

will be illustrated later.
Computational methods. The class pmlp:InferenceRule

describes the execution methods that generate the domain

knowledge. However, its describing capability is very lim-

ited. po:Process provides a very rich description of process.

Therefore, a correspondence between pmlp:InferenceRule

and po:Process is developed.

Represent the correspondence

The corresponding concepts identified among the source

ontologies need to be aligned with each other to provide

global provenance terminology. In general, there are several

approaches to represent the correspondences. One simple

way is to use owl:equivalentClass to imply that the corre-

sponding concepts from two different ontologies have the

same meaning. In OWL, this implies that every individual

of one class is also an individual of the other class. We

believe this is too strong a statement and it may be not

true for many cases. For example there is a class ssn:Obser-

vationValue in SSN to describe the value of the result of an

observation. In WaterML the value of an observation is

described by the class wml:TimeValuePair; if we define

these classes as equivalent, we imply that all ssn:Observa-

tionValue individuals are also wml:TimeValuePairs (not

true) and that all WML observations are generated from sen-

sors (also not true).

Since the the concept defined in PML is very generic, we

define a mapping whereby domain classes are subclasses of

the more generic PML classes. Specifically, the wml:Water-

MonitoringObservation, ssn:Sensor and po:Process are

defined as subclasses of pmlp:Information, pmlp:Sensor

and pmlp:Method Rule, respectively (see Figure 6).

Although PML is defined as the central ontology to

align all the other three source ontologies, there are

also some correspondences among the other source ontolo-

gies. Figure 6 shows the conceptual alignment among the

four source ontologies based on the correspondence

identified.

Both Semantic Sensor Network Ontology andWaterML

provide the semantics of observation concept. However,

observations could be generated either by gauges or by com-

putational methods such as gridding algorithms. Here we

intend to distinguish the sources of observations. The obser-

vation generated by gauges are captured by iknow:
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Figure 6 | A fragment of the IKnow model.
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ObservationTimeValuePair which is a sub-class of ssn:

ObservationValue and wml:TimeValuePair. The obser-

vations generated by computational methods are described

using wml:TimeValuePair.

The correspondences between WaterML and the

Process Ontology show that some time series act as

inputs or outputs of computational methods. The iknow:

TimeSeriesInput and iknow:TimeSeriesOutput are intro-

duced to describe the above concepts. They are defined as

sub-classes of wml:TimeSeries and po:Input/po:Output,

respectively.

Through building the correspondences among the four

ontologies, navigation paths are created from PML to

WaterML, SSN and PO in the IKnow model. It captures

the knowledge presented in the information life cycle of

data products. This will enable retrieval of provenance

across systems and allow queries to be answered across

domains. As long as the concepts involved in the
information life cycle of data products are covered by the

IKnow model, users are able to generate different prove-

nance graphs from the model.

Based on the above analysis, we can see the IKnow

model is a generic model that can be easily extended to

link to other domain ontologies through linking the PML-

based concepts, such as pmlp:Information, pmlp:Source

and pmlj:MethodRule, to domain concepts. Since data

analysis can be conducted by different communities

which span multiple disciplines, the knowledge covered

by the information life cycle of a data product should be

diverse and domain-rich. The IKnow model is designed

using a modular approach to effectively manage the knowl-

edge involved. This brings benefits of not only efficient

querying, easy maintenance, good understandability and

re-usability, but also improved interoperability that sup-

ports meaningful knowledge exchange among different

sources.
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THE KNOWLEDGE MANAGEMENT FRAMEWORK

In this section, we introduce the knowledge management

framework. It provides knowledge harvesting across hetero-

geneous systems, knowledge aggregation, storage based on

the IKnow model integration and querying capability.

While there are some ad hoc solutions for provenance-

aware applications, we believe that a systematic approach

in dealing with provenance generated by heterogeneous sys-

tems is important for the water domain. This will have a

benefit for not only the application knowledge management,

but also the system knowledge management.

Figure 7 illustrates the architecture of our knowledge

management framework. At the bottom of the figure, we

show a generic information flow generated by hetero-

geneous systems. To enable knowledge produced by the

various systems to be collected and used, the knowledge

management framework includes the following main

components.

Harvester service

Tracking provenance is challenging because heterogeneous

systems do not support provenance explicitly. The prove-

nance generated by various systems are hidden behind
Figure 7 | The knowledge management framework.
various sources. The two types of sources we encountered

are: (a) executed log files generated by systems and (b) data-

bases that exposed the provenance via Web Service

interfaces. Customised log harvesters and service harvesters

are developed respectively. They are executed to extract

intrinsic provenance artefacts from the above two sources.

Each harvester generates provenance documents in JSON

(JavaScript Object Notation) format and passes the JSON

documents to the Data Conversion Service.

A strategy is required to deal with missing provenance.

For the two cases studied in this paper, data are generated

using a fixed time interval. Therefore, provenance can be

harvested based on that pre-defined time interval accord-

ingly. The system is able to identify missing data because

the provenance trace structure is known. In this case, the

Data Conversion Service is not able to construct an appro-

priate trace in JSON format and a notification can be

generated. Imperfection in provenance is one of the impor-

tant research topics to be studied in future.

To reconstruct the information life cycle of a data pro-

duct, we need to stitch together the provenance generated

by independent distributed systems. The PASOA (Groth

et al. ) provides the communication protocols to identify

dependence among distributed resources. This will be in our

future implementation plan. In our current work, the infor-

mation life cycle of a data product can be reconstructed

based on the pre-determined trace structure and the tem-

poral order. We assume that the computational methods

are all executed within the same time zone and that the

timestamps are generated by synchronised clocks.

Data conversion service

The harvested provenance encoded in JSON documents are

pushed into a RESTful web service. They are assembled into

RDF instance data based on the designed Integrated Knowl-

edge model. The resulting RDF graph is called a provenance

trace. Each executed workflow produces one provenance

trace.

Storage

The provenance trace is stored in the AllegroGraph RDF

repository via a Jena interface as a named graph. Named
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graphs allow grouping of related RDF triples and are there-

fore a very convenient separation for each provenance trace.

AllegroGraph supports Simple Protocol and RDF Query

Language (SPARQL), RDFSþþ and Prolog reasoning

from numerous client applications. AllegroGraph uses

disk-based storage, enabling it to scale to billions of triples

while maintaining superior performance (http://www.

franz.com/agraph/allegrograph3.3//).

Query service

Knowledge, stored in anRDF database, is queried using a sep-

arate tool set via the SPARQL. SPARQL is a standard query

language and data access protocol for retrieving data encoded

in the RDF format. Queries can be phrased according to the

terms and structure of the Integrated Knowledge model.

Application

Various applications and visualisation methods can be built

on top of the Query Service. In Figure 7, a provenance trace

is visualised at top right which shows the information life

cycle to generate that particular data product.

The harvester services are designed to minimise the

impact on the existingheterogeneous systems. Theyalsomini-

mise the runtime impact on the process execution since the

harvesting processes can be executed independently. The

knowledge generated by heterogenous systems is harvested

and integrated, offering simple but powerful knowledge man-

agement functionality. This framework provides a scalable

and adaptable approach for knowledge enablement.
MODEL AND SYSTEM EVALUATION

In this section, we evaluate the Integrated Knowledge model

and the proposed framework. The model is evaluated from

the perspective of how the information life cycle of a data

product is represented in a precise way to enable querying

the domain knowledge and lineage relationship. The key cri-

teria for framework evaluation is that not only the

distributed provenance information can be harvested and

integrated but also the impacts on the existing systems are

miminised.
A generic prototype of knowledge management frame-

work for the water information system is developed for

our two user groups to support knowledge capturing in dis-

tributed environments.

The two user groups we engaged presented different

types of knowledge acquisition and, therefore, have different

issues and challenges of knowledge management. We use

the first user scenario to explain how cross-domain knowl-

edge is linked through the IKnow model. For the second

user scenario, we demonstrate some limitations of the

model and present our approach. For each scenario, we

first discuss the user groups and their working scenarios

and then present the IKnow model and the systems.
User group 1: Department of Primary Industries, Parks,

Water and Environment, Tasmania (http://www.dpiw.

tas.gov.au)

The Department of Primary Industries, Parks, Water and

Environment (DPIPWE) is responsible for the sustainable

management and protection of Tasmania’s natural and cul-

tural assets for the benefit of Tasmanian communities and

the economy. It guides and supports the use and manage-

ment of Tasmania’s land and water resources and protects

and promotes its natural, built and cultural assets.
User scenario

CSIRO Tasmanian ICT Centre has developed a Near-Real-

Time Water Information System (nrtWIS) for DPIPWE

based on the OGC Sensor Web Enablement (OGC-SWE)

standards. The nrtWIS produces flow forecasts in near-

real-time for the South Esk River catchment in Northeastern

Tasmania, Australia. The real information life cycle of the

flow forecast production is complex. We use a simplified

version (Figure 8) as a running example to demonstrate

the idea.

• Firstly the rain gauges, owned by different government

agencies (CSIRO, Bureau of Meteorology, and Hydro Tas-

mania Consulting), sense the phenomena and send rainfall

observations every 15 min into the agencies’ databases.

• The rainfall observations are published via OGC-SWE

SOS. The SOS provides requesting, filtering, and retrieving
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Figure 8 | An example of the simplified information life cycle for flow forecast data generated by nrtWIS.
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observations and sensor system information. The interoper-

ability interfaces and metadata encodings are specified to

enable integration of heterogeneous sensor information.

• Based on the query received from the forecast model, a

Kepler workflow system (Altintas et al. ), executed

by CSIRO, harmonises the time series from the SOSs,

checks the quality and validates the errors such as gaps

and spikes. It then generates a gridded rainfall surface

which is used as an input for the hydrological model.

• The gridded rainfall surface data are received by the

HydroTasmania agency as an input for its hydrological

model, the Australian Water Balance Model (AWBM).

AWBM is calibrated by Hydro Tasmania Consulting

and it produces flow forecasts in a 2-hourly interval.

• Finally, the forecasts are published through an SOS.

In Figure 8, we can see the interoperability challenge faced

by the Near-Real-Time Water Information System stems from

its capturing and querying of knowledge across the hetero-

geneous systems which do not handle provenance explicitly.

Provenance trace for nrtWIS

Based on the IKnow model, Figure 9 shows a fragment of the

provenance trace for the above user scenario. Please note

that PML imports the Data Structure Ontology (http://tw.

rpi.edu/portal/PML_Data_Structure_OWL_Ontology) (see

‘ds’ namespace in Figure 9) to encode the ‘list’ concept.
On the left-hand side, the NodeSets represent the major

components involved in the information life cycle to

generate the flow forecast: published forecast, forecast,

gridded rainfall, published rainfall and rainfall source.

Note that the lineage relationships among the components

are represented in a backtrack style (dotted line with

arrow). For easy presentation, only the published forecast

NodeSet and rainfall source NodeSet are opened for detailed

presentation.

As introduced previously, each NodeSet captures its con-

clusion and the justification of the conclusion. For example, in

Figure 9, the iknow:NS_ PublishedForecast captures the flow

forecast result iknow:Published Forecast_11092010_183026

generated at 18:30:26 on 11 Sept. 2010 through the iknow:

GetObservation service using the iknow:ForecastDB database.

The details of forecast (time series) and the GetObservation

service are described using the domain conceptwml:WaterMo-

nitoringObservation and the process concept po:Process,

respectively.

The iknow:NS_Hydro-Tas_RainfallSource describes the

sensors (e.g. RIMCO_7499 at TowerHill) used to generate

the observations which are stored in the HydroTas rainfall

database.

The complete provenance trace is much larger than pre-

sented in Figure 9. Here we present the main ideas and

describe the lineage relationships among the computational

methods. It is clear that knowledge of computational
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Figure 9 | A fragment of the provenance trace for the near-real-time information system.

Algorithm 2 | Given a forecast, retrieve the sensor used with its location and accuracy

Input:
PublishedForecast_11092010_183026 (the forecast generated at
18:30:26 on 11th Sep., 2010)

Output:
?sensor, ?location and ?property ?condition (the sensors’
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methods, the domain concepts and the lineage relationships

involved in the above user scenario are all captured based

on the designed IKnow model. This enables the cross-

domain knowledge (e.g. the accuracy of sensors) to be col-

lected and queried in a unified manner.
Algorithm 1 | Given a forecast, retrieve the simulation model applied

Input:
PublishedForecast_11092010_183026 (the forecast generated at
18:30:26 on 11th Sep., 2010)

Output:
?model (the simulation model that generated the forecast)

Description:
1: SELECT ?model
2: WHERE {
3: ?ns pmlj:hasConclusion PublishedForecast_11092010_183026 .
4: ?ns pmlj:isConsequenceOf ?is .
5: ?is pmlj:hasAntecedentList ?nsl .
6: ?nsl ds:first ?ns2 .
7: ?ns2 pmlj:isConsequenceOf ?is2 .
8: ?is2 pmlj:hasInferenceRule ?model .
9: }

locations and accuracies)

Description:
1: SELECT ?Sensor ?Location ?Property ?Condition
2: WHERE {
3: ?ns pmlj:hasConclusion :PublishedForecast_11092010}
4: _183026 .
5: ?ns pmlj:isConsequentOf ?is .
6: ?is pmlj:hasAntecedentList ?nsl .
7: ?nsl ds:first ?forecast_ns .
8: ?forecast_ns pmlj:isConsequentOf ?forecast_is .
9: ?forecast_is pmlj:hasAntecedentList ?forecast_nsl_1 .
10: ?forecast_nsl_1 ds:first ?gridded_ns .
11: ?gridded_ns pmlj:isConsequentOf ?gridded_is .
12: ?gridded_is pmlj:hasAntecedentList ?gridded_nsl .
13: ?gridded_nsl ds:first ?rainfall_ns .
14: ?rainfall_ns pmlj:isConsequentOf ?rainfall_is .
15: ?rainfall_is pmlj:hasAntecedentList ?rainfall_nsl_1 .
16: ?rainfall_nsl_1 ds:first ?hydrotas_db_ns .
17: ?hydrotas_db_ns pmlj:isConsequentOf ?hydrotas_db_is.
18: ?hydrotas_db_is pmlj:hasSourceUsage ?sensing_info .
19: ?sensing_info pmlp:hasSource ?Sensor .
20: ?Sensor DUL:hasLocation ?Location .
21: ?Sensor ssn:hasMeasurementCapability ?cap .
22: ?cap ssn:hasMeasurementProperty ?Property .
23: ?cap ssn:inCondition ?Condition .
24: }
Since the number of published observations retrieved

through a SOS (see Figure 8) may be very large, we decide

not to store the retrieved observation result data as part of pro-

venance but rather the SOS query executed by the Kepler
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workflow. This proved to be very cost-effective. The query

assembles the required SOS names based on the pre-defined

criteria. Then the Kepler retrieves the related observations

from the provided SOSs. Figure 10 shows how to use the

PML model to capture the query details, such as query con-

tent, query creation time and the query engine used.

By capturing the query issued, the system is able to

describe how the rainfall observations can be retrieved at

query time. The disadvantage of this approach is that,

if the database is updated subsequent to the initial query,

then the system may return different observations to those

retrieved at the time of the initial workflow execution.

Provenance framework

The harvester services collect discrete knowledge from var-

ious log files and web services every 2 h and then the

provenance trace is generated. Using the provenance trace,

we are able to answer provenance questions. We list two

queries as examples to demonstrate how the provenance

trace is applied to answer queries using SPARQL.

Query 1: What hydrologic simulation model was

applied to generate a particular forecast?

Algorithm 1 demonstrates how the hydrologic model is

retrieved using the IKnow model. The returned result is

‘AWBM’ (Australian Water Balance Model).
Figure 10 | IKnow query modelling.

Table 1 | Returned result for query 2

Sensor Location Property

esk:TowerhillRIMCO7499 esk:TowerHill sn:AccuracyPlusM

esk:TowerhillRIMCO7499 esk:TowerHill ssn:AccuracyPlusM
Query 2: What sensors are used to generate this

forecast and what are their locations and measurement

accuracies?

Algorithm 2 demonstrates how SPARQL supports

traversing in the IKnow model to answer this query.

Lines 3–6 capture the NodeSet iknow:NS_PublishedFore-

cast which is linked (line 7) to iknow:NS_Forecast (lines

8–10) (see Figure 9). Similarly, iknow:NS_Grided Rainfall,

iknow:NS_Published RainfallSouce and iknow:NS_Hy-

droTasRainfallSource are navigated by lines 11–13, lines

14–16 and lines 17–19, respectively. As a result, the quer-

ied forecast is linked to the specific sensor that provided

the original observations. Lines 20–23 retrieve the

sensor capability supported by the Sensor Network Ontol-

ogy. It is clear that any piece of knowledge could be

retrieved as long as the concept is captured in the prove-

nance trace.

Table 1 shows the returned result for query 2. For sensor

RIMCO7499, its location is at Tower Hill but with two accu-

racies based on the condition: heavy rainfall or light rainfall.

The meaning of Heavy Rainfall Condition and Light Rain-

fall Condition could be further queried within the SSN

ontology to reveal that they are 250–500 and 0–249 mm/h,

respectively.

Figure 11 shows the user interface of the Near-Real-

Time Information System. On the left-hand side, the outer

blue polygon depicts the South Esk river catchment. Scat-

tered markers within the catchment represent the flow

forecast offering at different locations. By clicking on one

marker, the short term forecast (red curve) and actual read-

ing till current time (blue curve) is displayed on the right-

hand side.

A plug-in function is developed to retrieve the prove-

nance trace associated with each forecast. IWBrowser

(http://browser.inference- web.org/iwbrowser/) is used to

visualise the provenance trace. IWBrowser provides
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Figure 11 | Interface of the near-real-time information system.

Figure 12 | Provenance trace visualised using inference browser.
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graphical rendering capability of a PML trace. Figure 12

shows the simplified provenance trace.

In Figure 12, each component represents a NodeSet.

Users can click the small box associated with each NodeSet

to get more details, such as the conclusion, the inference

rule or the source used.

By developing the knowledge management framework

for nrtWIS, we provide a mechanism for DPIPWE water

managers to ask questions about what, who, when, where

and how the flow forecast was generated. This will help

them to make informed decisions.

Our experience shows IWBrowser is a useful tool to

visualise provenance traces. However, the visualisation

execution time is unsatisfactory (e.g. several minutes) if a

provenance trace is complicated. We find that this holds

for most of our real-world cases. Furthermore, it is not

very intuitive for domain experts who do not understand

the structure of the information model. We believe there

is considerable opportunity for further research in

domain-independent visualisation and navigation of

provenance.
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Algorithm 3 | PML modelling algorithm of multiple outputs

Input:
Pparent that generates the output O where O ⊇ (O1, O2, …, On);
Pi (i ∈ (1…n)) is the process that uses Oi (i ∈ (1…n)) as the
input; JPi (i ∈ (1…n)) is the process annotated with ‘defined’;

Output:
the provenance trace by the IKnow model

Description:
1: Create NodeSet Pparent_NS;
2: Set Pparent}_NS pmlj:hasConclusion O;
3: for i¼ 1→ n
4: Create NodeSet JPi_NS;
5: Set JPi_NS pmlj:has Conclusion Oi;
6: Set JPi_NS pmlj:isConsequenceOf JPi_IS;
7: Set JPi_IS pmlj:hasInferenceRule JP;
8: Set JPi_IS pmlj:hasAntecedentList JPi_NSL;
9: Set JPi_NSL ds:first Pparent_NS;
10: Create NodeSet Pi_NS;
11: Set Pi_NS pmlj:isConsequenceOf Pi_IS;
12: Set Pi_IS pmlj:hasInferenceRule Pi;
13: Pi_IS pmlj:hasAntecedentList Pi_NSL;
14: Pi_NSL ds:first JPi_NS;
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User group 2: Australian Bureau of Meterology

(http://www.bom.gov.au/)

The Bureau of Meteorology is Australia’s national weather,

climate and water agency. It provides regular forecasts,

warnings, monitoring and advice spanning the Australian

region and Antarctic territory.

User scenario

The Bureau of Meteorology is developing a continental-scale

modelling system, the Australian Water Resource Accounting

and Assessment (AWRA). The system uses observations of

different types in a model data assimilation scheme to pro-

duce a national water account. It can then be used to

produce national water resource assessments. For example,

the landscape model (AWRA-L) developed is a variable resol-

ution (250 m–50 km) gridded landscape hydrology model

that produces interpretable water balance component esti-

mates. It is running in an experimental form within CSIRO.

The main computations are run within the Hydrological

Forecasting and Warning System (Delft-FEWS), a workflow-

oriented modelling environment. It provides the capabilities

to integrate large datasets, process the data using specialised

modules and allow easy integration of existing modelling

capacities through open interfaces. A general workflow to

produce groundwater storage and evaporation using

FEWS is being developed. Figure 13 shows part of the work-

flow structure.

It is required that a tracking system should be in place to

ensure an effective audit trail.

Provenance trace for FEWS

For the FEWS environment, our users developed configur-

ation files to manipulate the data and run the simulation

models. Data are stored in file systems. Compared to the pro-

venance trace for nrtWIS, we use this scenario to

demonstrate how to manage the complex lineage relation-

ships presented in information life cycles.

In the PML justification module, there is a restriction

defined on pmlj:NodeSet that its pmlj:hasConclusion property

canhave onlyone conclusion.However, it is common in scien-

tific workflow that one process can generate multiple outputs.
Figure 13 shows some of the processes involved in the

above scenario. The AWRA-L process generates 17 outputs

which are each processed by the Import NetCDF component

separately. If we describe AWRA-L’s 17 outputs as one con-

clusion, the ImportNetCDF process could not be properly

described because each invocation uses different inputs. For

example, the AWRA-L(outputn) is different from the AWRA-

L(outputn–1) although theyare both generated by theAWRA-L.
A method is developed to handle the above case without

changing the PML ontology. We are given a list of processes,

P1, P2,…, Pn, with inputs generated by their common parent

process Pparent. For the purpose of appropriate knowledge

modelling using the IKnow model, intuitively, a process

JPi (i ∈ (1…n)) is needed to extract each sub-result from

the multiple outputs and pass to Pi (i ∈ (1…n)), respectively.

During the knowledge modelling step, a collection of

JustfiedNodeSets are constructed for each ‘virtual’ JPi (i ∈
(1…n)). They are defined as an antecedent of Pi (i ∈ (1…

n)) NodeSet. The inference rule is annotated as ‘Defined’,

meaning that this is not the actual computational method

that was executed. Figure 14 depicts the above idea.
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Figure 14 | PML modelling for multiple outputs case.

Figure 13 | Part of FEWS workflow.
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Algorithm 3 describes the major steps involved to con-

struct Justified NodeSet to address the multiple outputs

problem. Lines 1–2 set the parent NodeSet for Pparent. For

each child process Pi, lines 4–9 construct the Justified Node-

Set and the actual NodeSet for Pi is constructed between

lines 10–14.

In our experience, it is sometimes impossible to track pro-

venance due to the process designed for some particular

purposes. In this use case, a process rename (see Figure 13)

overwrites its inputTSEoutput by its outputRenameoutput. There-

fore,TSEoutput is lost. ForPMLmodelling in this casewe set the

conclusion of Time Series Export NodeSet as ‘overwritten’.

Provenance framework

Based on the framework we propose, the harvester services

are customised to extract provenance from the log files. The
system provides rich search functionality to enable users to

search for a particular data and/or computational method.
CONCLUSION

In this paper, we addressed the knowledgemanagement chal-

lenge for distributed water information systems. Based on the

requirements, we proposed the ontology-based Integrated

Knowledge model to describe the provenance semantics cap-

tured in the information life cycle of data products. The

Semantic Sensor Network Ontology, WaterML, Process

Ontology and PML are aligned with each other to represent

key domain concepts, computational methods and their

relationships in the water domain. The model provides an

unambiguous, computer-interpretable form serving as an

effective sharing, re-usable and knowledge discovery

method for distributed and heterogenous systems. Given the

large amount of provenance involved in the information life

cycle, a modular-based approach was developed to improve

the efficiency and effectiveness of knowledge management.

A generic knowledge management framework was

designed to capture provenance generated by distributed

heterogeneous systems. It isolates the hydrological
www.manaraa.com
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modelling systems from the provenance system and attempts

to minimise the impact on the existing heterogeneous sys-

tems. This enables scalable, adaptable and domain-

agnostic knowledge management.

Based on the designed model and framework, two real-

world use cases were examined to verify our approach. The

experimental results demonstrate that the IKnow model and

the knowledge management framework are practical and

extensible and that the provenance queries identified from

our user requirements can be answered. The general

approach taken in this paper can be applied to encode the

domain knowledge of any discipline.

In future, we will investigate how to adopt the Prove-

nance Data Model being developed by the W3C

Provenance Working Group to develop the Integrated

Knowledge model discussed in this paper. In time, this

should enable our framework to leverage additional emer-

ging research for provenance.
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